Combining the cell-encapsulation technique and axon guidance for cell transplantation therapy.

نویسندگان

  • Hironori Yamazoe
  • Kazuko Keino-Masu
  • Masayuki Masu
چکیده

In cell transplantation therapy for the treatment of neurodegenerative disorders, encapsulation of implanted cells in a semipermeable membrane is a promising approach to protect the implanted cells from host immune rejection and inhibit the invasion of tumor into surrounding tissue if the implanted cells form a tumor after transplantation. However, implanted neurons isolated by capsules could not build connections with host neurons, preventing the implanted neurons from responding to stimuli from host neurons. In the present study, we focused on the passage of neurites and axons navigated by axon guidance molecules through membrane pores to enable encapsulated neurons and host neurons to form connections. The type of matrix coated on membranes and the pore size of the membranes greatly affected the successful passage of PC12 neurites through membrane pores. PC12 neurites preferably passed through collagen-coated membranes with pores greater than 0.8 μm in diameter, but the neurites did not pass through albumin- or fibronectin-coated membranes or membranes with pores less than 0.1 μm in diameter. We could navigate the direction of commissural neural axon extensions by utilizing the axon guidance molecules secreted from floor plate and make guided axons pass through the membrane pores. These results suggest the feasibility of building connections between encapsulated neurons and host neurons by encapsulating the implanted neurons and axon guidance molecules, which attract the axons of host neurons into the capsule, in the porous membranes with suitable pore size and matrix coating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

Recent Technological Advances in Hepatogenic Differentiation of Stem Cells Relevant to Treatment of Liver Diseases

Liver failure, in an acute or chronic form, is a growing health problem ranking as one of the leading causes of death worldwide. Inborn errors of metabolism characterized by defects in hepatic enzymes or other proteins with metabolic functions, such as receptors or transporters accompanied with environmental factors involve etiology and presentation of liver failure. Currently, the only establi...

متن کامل

The Prognostic Impact of WT1 Expression Levels, Mutations, and SNP rs16754 in AML Patients: A Retrospective Cohort Study

Background and Objective: The clinical outcomes and treatment options for acute myeloid leukemia (AML) patients are highly dependent upon molecular markers. In this study, Wilms tumor (WT1) (exons 7 and 9) mutations, SNP rs16754, and WT1 expression levels in 130 random AML patients were screened; FMs-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD), nucleophosmin (NPM1), and CCAAT/...

متن کامل

Feasibility of high-dose iodine-131-metaiodobenzylguanidine therapy for high-risk neuroblastoma preceding myeloablative chemotherapy and hematopoietic stem cell transplantation: a study protocol

Objective(s): High-risk neuroblastoma is a childhood cancer with poorprognosis despite modern multimodality therapy. Internal radiotherapy using131I-metaiodobenzylguanidine (MIBG) is effective for treating the disease even if it isresistant to chemotherapy. The aim of this study is to evaluate the safety and efficacyof 131I-MIBG radiotherapy combined with myeloablative high-dose chemotherapyand...

متن کامل

Cell Therapy for Traumatic Brain Injury: Opportunities and Pitfalls

Today, stem cell transplantation is a hot topic in scientific circles as a novel therapeutic approach to repair the structure and function of central nervous system. The safe and neuroprotective effects of cell therapy in models and traumatic brain injury patients were evaluated in many experimental and clinical studies in recent decade and somewhat promising results were provided to the scient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomaterials science. Polymer edition

دوره 21 13  شماره 

صفحات  -

تاریخ انتشار 2010